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Coil-globule transition for regular, random, and specially designed copolymers:
Monte Carlo simulation and self-consistent field theory
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The coil-globule transition has been studied forA-B copolymer chains both by means of lattice Monte Carlo
~MC! simulations using bond fluctuation algorithm and by a numerical self-consistent-field~SCF! method.
Copolymer chains of fixed length withA andB monomeric units with regular, random, and specially designed
~proteinlike! primary sequences have been investigated. The dependence of the transition temperature on the
AB sequence has been analyzed. A proteinlike copolymer is more stable than a copolymer with statistically
random sequence. The transition is more sharp for random copolymers. It is found that there exists a tempera-
ture below which the chain appears to be in the lowest energy state~ground state!. Both for random and
proteinlike sequences and for regular copolymers with a relatively long repeating block, a molten globule
regime is found between the ground state temperature and the transition temperature. For regular block co-
polymers the transition temperature increases with block size. Qualitatively, the results from both methods are
in agreement. Differences between the methods result from approximations in the SCF theory and equilibration
problems in MC simulations. The two methods are thus complementary.

DOI: 10.1103/PhysRevE.65.041708 PACS number~s!: 87.15.Aa
en
s

s
.e
xp
oo

er
ic
tt

e
ul
ct
e
eg
se
th

m
.
bl
in

tio
a

ed
bio-

en
tical

il-
se

-
are

cally

re-
nal
ys-
ools
ting
il-
he
or

m-
nd,
ea-
oly-

il-
of
ers
e-
nsi-
I. INTRODUCTION

Macromolecules composed of a single type of segm
i.e., homopolymers, behave as fractal objects: the radiu
gyration Rg of the molecule scales@1–3# with N repeating
units along the chain asRg}Na, wherea,1. The scaling
exponent depends on the polymer concentration and the
vent quality. When the chains are in the dilute regime, i
when the interchain distance exceeds the coil size, the e
nent decreases with decreasing solvent quality. In a g
solvent the chains are highly swollen,a'0.6. Under ideal or
u conditions the coils are Gaussian anda50.5, whereas
upon worsening the solvent quality below theu point the coil
collapses to a globule witha51/3. This last transition is
referred to as the coil-globule transition. For homopolym
the collapse transition is directly followed by macroscop
phase separation because the collapsed chains also a
each other.

For macromolecules composed of more than one segm
type, i.e., copolymers or heteropolymers, the coil-glob
transition and phase separation are usually not dire
coupled. The uncoupling occurs especially when the solv
is selective for the various units along the chain. The s
ments for which the solvent is poor will cluster into a den
core and solvated segments will tend to accumulate on
outside of the globule. These segments on the outside
protect the system from macroscopic phase separation
principle, some interchain aggregation remains possi
Similarly, as in, e.g., surfactant systems, copolymer cha
may aggregate into aggregates of finite size. If the protec
process is sufficiently effective, interchain aggregation m
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be completely stopped and unimolecular objects are form
that have a dense core and a solvated corona. Typical
logical examples are globular proteins.

The coil-globule transition in heteropolymers has be
studied by many authors in recent years using both analy
techniques and computer simulations@4–13#. One of the mo-
tivations for these studies is the direct link to protein stab
ity. Questions regarding the conformational stability of the
molecules in bulk and the corresponding~in!stability at
liquid-liquid or at solid-liquid interfaces remain largely un
answered as yet. One of the reasons for this is that there
few theoretical approaches that can be used to systemati
and effectively investigate these phenomena.

Our purpose is to launch a line of research aimed at
solving some of the issues regarding the conformatio
properties of heteropolymers, especially in interfacial s
tems. In the first step it is necessary to select theoretical t
and appropriate models for these purposes. The tes
ground for such an investigation is the study of the co
globule transition of heteropolymers in a dilute solution. T
next step is to apply similar tools to interfacial systems. F
obvious reasons, it is not workable to include the full co
plexity of real block copolymer systems. On the other ha
it is necessary to include in the model the fundamental f
tures. Arguably, the essential first step is to use heterop
mers with two types of polymer unit, hydrophilic~A! and
hydrophobic (B), as model molecules. Therefore, the co
globule transition in dilute bulk solution of three types
heteropolymers, regular copolymers, random copolym
and ‘‘proteinlike’’ @5,7# copolymers, was investigated. Sp
cifically we are interested in the dependences of the tra
©2002 The American Physical Society08-1
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tion temperature on the primaryAB sequence distribution. In
particular we are aimed to find the influence of the prima
structure on critical properties of copolymer chains and
role of long-range correlations in the primary structure
proteinlike copolymers. Using two computation techniqu
for investigating the problem of the coil-globule transitio
for copolymers with preset primary sequence, we can
cover how both methods perform for this problem and h
they complement each other. We limited our investigation
three types of sequences mentioned above. Some related
results for ‘‘random block copolymers’’ have already be
discussed elsewhere@7#.

The two models used are necessarily rather primitive.
ficiency considerations prompt us to use models that emp
lattice approximations. More specifically, we use a numer
self-consistent-field~SCF! theory and Monte Carlo~MC!
simulations. The motivation for the use of SCF tools is th
the most sophisticated models of polymer adsorption are
this type@14,15#. The SCF method is based upon an appro
mate partition function of the system from which all corr
sponding thermodynamic quantities are computed direc
Not all excluded-volume correlations are included: the po
mer molecule is modeled as a Markov chain. Especially
the study of proteins that have a unique tertiary structu
SCF techniques are not optimal. However, we will show t
the current SCF technology can be extended so that s
important features of the conformations of heteropolym
are within reach.

The motivation for using Monte Carlo simulations, an
especially the bond-fluctuation model@16–19#, is that this
method has successfully been used to analyze various as
of the coil-globule transition in homopolymer@20–23# as
well as heteropolymer@5–7# chains. By means of this mode
the adsorption of copolymer chains with different prima
structures on a flat surface has been also studied@24#. A
strong point of MC simulations is that all the exclude
volume correlations are included: the chain is fully se
avoiding. This type of exactness has its price: a statistic
sound solution is achieved only after a very large numbe
trial steps. In other words, the simulations are very time c
suming and in practice it is not always possible to equilibr
the system in all aspects; the sampling of conformations
densely packed systems is difficult. We have used a mult
histogram reweighting technique@25–27# to extrapolate to
the behavior of the chains away from the transition reg
@21–23,28#. Well-equilibrated points near the coil-to-globu
transition were used for this. This approach proved to g
satisfactory results. More efficient algorithms for sampli
the conformational statistics in dense systems will be nee
to obtain direct results for the dense globules. Such impro
ments have been suggested recently@29#. In this paper we
have used a standard implementation of the bond fluctua
model. Some thermodynamic quantities are readily co
puted, such as the average energy in the system, or the m
size of the polymer chain. Other quantities, such as the
tropy and the free energy, are more expensive. We, there
have concentrated on the former properties in comparing
models.

The remainder of this paper is as follows. In the followin
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section we will specify the necessary details of the two me
ods. Then we present some key results for both methods
the discussion the focus will be twofold. One of the goals
to obtain more knowledge of the coil-globule transitions f
various types of copolymers. The other goal is to comp
the results of the two approaches. At the end an outlook
some conclusions are presented.

II. COMPUTATIONAL ASPECTS

A. The numerical self-consistent-field theory

The self-consistent-field approach is a well-know
method in the field of inhomogeneous polymer systems
principle, it amounts to solving the Edwards diffusion equ
tion in a lattice discretization. This method has already be
used for obtaining the properties of a single chain in vario
solvent qualities@2#. As a first approximation we can assum
that the chain of interest is spherically symmetric, and th
the Edwards diffusion equation should be solved in this
ometry. Second, one can consider the properties of a ce
chain with the constraint that segment number 1 is at
center of the coordinate system, and that the remainder o
chain is floating around this ‘‘grafting’’ point as a one-arme
star. At the center it is then possible to account for the
cluded volume of the grafting segment by not allowing oth
segments of the chain to enter the grafting coordinate. T
leads to nonhomogeneous potential fields and also nonho
geneous segment distributions of the central chain. Us
this method one can obtain the swelling of the chain in go
solvent and retrieve basically the Flory result that the rad
of gyration is proportional to the degree of polymerizationN
in the power 0.6@1,30#. The grafting of the end in the cente
is not a serious problem in the thermodynamic limit, but it
not allowed for the present class of problems. We want
know the conformational properties of relatively short c
polymers and with specified primary sequence. For this r
son we apply a recently developed alternative SCF proced
that yields@30# Rg}N0.582.

Before we discuss the details we first outline the strate
of the calculations. The key idea is that not an end poin
fixed to the center of the coordinate system, but we all
any segment in the chain to be there. It is clear that not ev
segment in the chain has the same probability to be a ce
segment. Indeed, the proper statistical weight must be fo
for a given segment to be at the center. When some inte
segment in the chain is at the center, the chain is thus m
eled as a two-armed star, with two arms typically of uneq
length. Thus, in our calculations we will allow only thos
conformations which have exactly one of its segments at
center of the system. All other possible conformations, i
chains that do not visit the center are disregarded. As in
one-armed star discussed above, the fact that the cha
effectively grafted at the center has the effect that the
semble averaged chain density will be relatively high n
the grafting point. This causes segments to interact with e
other. In the spirit of the SCF approach, this interaction giv
rise to a segment potential. This segment potential is a fu
tion of the segment densities on the one hand and it aff
the segment densities on the other hand. Numerically, a fi
8-2
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COIL-GLOBULE TRANSITION FOR REGULAR, . . . PHYSICAL REVIEW E65 041708
point is found for the potential and density profiles within t
constraint that the system is incompressible~all lattice sites
are filled either by polymer segments or solvent molecule!.
Such a fixed point is the SCF solution. A typical SCF so
tion usually represents the equilibrium density distributio
When there is more than one SCF solution, it is necessar
analyze the thermodynamic quantities in order to select
most favorable one.

Below we give some mathematical details of the form
ism. We choose here to develop the SCF formalism by m
ing use of lattice approximations. It is necessary to spe
how this is done in order to facilitate comparison with t
bond fluctuation model discussed below. We also discuss
chain propagators and briefly the analysis of the equilibra
density profiles.

1. The lattice

The space is discretized such that it is represented by
of lattice sites with volumeb3. It is assumed that in this
lattice the layers exist in which the segment density~prob-
ability that a segment of a given type occupies a site of
layer! is constant throughout this layer. In this layer we th
use a mean-field approximation. In effect, the sites in suc
layer are essentially indistinguishable. As the distinction
sites in the layers is unimportant, it suffices to develop
equations such that only the properties of the layers oc
o
hi
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to
C
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s
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Differences in segment densities are allowed between lay
If the layers have spherical symmetry, there is only a gra
ent in the radial direction. We refer to this as a one-gradi
SCF theory. Additionally, a two-gradient SCF calculation
used. The two-gradient SCF theory is applied in a cylindri
coordinate system: the mean-field averaging is done ov
ring of lattice sites. This enables gradients both along
long axis of the cylinder~which is the symmetry axis! as
well as in the radial direction. A two-gradient SCF theory
more realistic, since it enforces less symmetry on the po
mer configurations. However, the calculations are mu
more CPU intensive. In this paper, we choose to present
theory concentrating on the one-gradient SCF technique.
extension to the two-gradient SCF technique is straight
ward ~see also@31#!.

We thus consider a spherical lattice. The number of latt
sites in layers with this topology depends on the dista
between the layer and the center of the system. Typically
demand the layers to have the same width of sizeb. As a
consequence, we allow a layer to have a noninteger num
of sites. This is not a problem because, in effect, the S
theory is an ensemble method: the average over many co
of the central chain is computed. The first, central lay
however, is special: its radius is given byb8. The number of
lattice sites in each layerr 51, . . . ,M is given by
L~r !55
4p

3
~b8/b!3 if r 51

4p

3
$@~r 21!1b8/b#32@~r 22!1b8/b#3% otherwise.

~1!
igh-
rs,
bors
r to
pos-
-
la-

t
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n is

o go

e

In order to compute efficiently the ensemble average
all possible and allowed conformations of the chain in t
lattice it is necessary to specify thea priori transition prob-
abilities in this lattice. This probability to go from layeri to
j is designatedl( i u j ).

l~r ur 11!5l1A~r !/L~r !, ~2!

l~r ur 21!5H 0 if r 51

l1A~r 21!/L~r ! otherwise,
~3!

l~r ur !512l~r ur 11!2l~r ur 21!, ~4!

where A(r ) is the outer area of a layerr: 4p@b81(r
21)b#2/b2. The parameterl1, which specifies thea priori
probability to step from a layer to a neighboring one in t
limit of r→` ~flat layers!, is a parameter that we can use
adjust the SCF theory to match the details of the M
method. Thel1 can only be adjusted in the range whe
none of the transition probabilities resulting from it are le
than zero. Ensuringl(r ur )<0 gives 0<l1<b8/(3b). In the
f
s

s

MC system a polymer segment can have at most 26 ne
bors. If the MC system would be divided in parallel laye
such a surrounded polymer segment would have 8 neigh
in the same layer and 9 in each adjacent layer. In orde
have our results match the simulation data as closely as
sible we have chosenl159/26 which matches the coordina
tion number for densely packed monomers in the simu
tions. This means that we haveb8527b/26 as the smalles
allowed radius for the central lattice layer.

From symmetry considerations there must exist a rela
between the transition probabilities between two layers
the number of lattice sites in these two adjoining layers. I
easily shown that this so-called detailed balance conditio

l~r ur 11!L~r !5l~r 11ur !L~r 11!. ~5!

In words this equation says that there are as many ways t
from layer r to r 11 as the other way around.

2. The propagator formalism: From potentials to densities

We assume that for each segment typex5A,B,S, whereS
is a solvent molecule andA andB are segment types of th
8-3
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polymer chain, there is a segment potential profileux(r ).
Later on we will see that these potentials are functionals
the densities. Here we will show how the segment densi
are computed from the segment potentials.

The full set of possible conformations on the spheri
lattice can be split into two: all conformations that visit th
central layer—we will label this set with the subscripta, and
all other ones, which are labeledf. It is relatively straightfor-
ward to compute this latter set by developing the Edwa
diffusion equation with the constraint that the potential f
by any of the segments is infinite in layerr 51. Then no
segments are allowed in this layer and thef set is available.
The complete set of conformations is also easily genera
The difference between the two gives the distribution of
set of conformations that we are interested in. So, our
goal is to obtain both thef and the overall conformation
distributions.

We introduce free segment distribution functions, defin
by

Gx~r !5exp@2ux~r !/kT#. ~6!

These segment-type-dependent distribution functions
generalized to free segment distribution functions that
pend only on the ranking number within the polymer cha
s51, . . . ,N: G(r ,s)5GA(r )qs

A1GB(r )(12qs
A), where

qs
A is the chain architecture operator which is unity wh

segments is of type A and zero otherwise. The setqs
A ~a

sequence of 0’s and 1’s! defines the primary sequence of th
polymer chains.

The un-normalized density distribution due to all possi
and allowed conformations follows from

w~r ,s!5G~r ,su1!G~r ,suN!/G~r ,s! ~7!

where G(r ,su1) and G(r ,suN) are chain end distribution
functions that obey the Edwards diffusion equation. In
lattice approach they can be computed from the recurre
relations

G~r ,su1!5G~r ,s!^G~r ,s21u1!&, ~8!

G~r ,suN!5G~r ,s!^G~r ,s11uN!&, ~9!

where the angular brackets indicate a three layer aver
Generally,^X(r )& is defined as

^X~r !&5l~r ur 11!X~r 11!1l~r ur !X~r !

1l~r ur 21!X~r 21!, ~10!

where X(r ) is an arbitrary layer property. Here, we u
G(0,s)50, which means that it is impossible to penetrate
the nonexisting layerr 50, and G(M11,s)5G(M ,s) so
that between layerM andM11 we have a reflecting bound
ary condition. The recurrence relations, Eqs.~8! and~9!, are
started byG(r ,1u1)5G(r ,1) and G(r ,NuN)5G(r ,N), re-
spectively.

The un-normalized density distribution of thef-type con-
formations is found as
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w f~r ,s!5H 0 if r 51

Gf~r ,su1!Gf~r ,suN!/G~r ,s! otherwise,
~11!

with

Gf~r ,su1!5Gf~r ,s!^Gf~r ,s21u1!&, ~12!

Gf~r ,suN!5Gf~r ,s!^Gf~r ,s11uN!&, ~13!

whereGf(r ,s)5G(r ,s) except forr 51 whereGf(1,s)50.
Obviously the starting conditions are modified according
Now, the un-normalizeda-type conformation distribution is
obtained by

wa~r ,s!5w~r ,s!2w f~r ,s!. ~14!

The normalization of thea-type density profile should be
such that exactlyN segments are present in the syste
r(r ,s)5Cwa(r ,s) with C given by

N5C(
s51

N

(
r 51

M

wa~r ,s!L~r !. ~15!

The overall density ofA and B units is now given by
rA(r )5(s51

N qs
Ar(r ,s) andrB(r )5(s51

N (12qs
A)r(r ,s).

The density profile of the solvent molecules is simp
found asrS(r )5GS(r ).

3. From densities to potentials

From differentiation of the mean-field partition function
is possible to find an expression for the segment potentia
terms of the segment densities. This step is well documen
in the literature and is not repeated here@32#. The segment
potential is composed essentially of two contributions. T
first one is an excluded-volume potentialu8(r ) which is a
Lagrange field coupled to the requirement that each laye
exactly occupied by segmentsA, B, or S: (xrx(r )51.
The second one accounts for nearest-neighbor contacts
rametrized by Flory-Huggins interaction parameters

ux~r !

kT
5u8~r !1(

x8
xxx8@^rx8~r !&2rx8

b
#. ~16!

The angular brackets denote again a three-layer averag
in Eq. ~10!. The segment bulk densityrx8

b is 0 for segment
typesA andB and unity for segment typeS.

4. The SCF solution and its analysis

The above set of equations is closed. From the segm
potentials it is possible to obtain the distribution due to tha
type of conformations, as well as the distribution of the s
vent molecules. From the distributions it is possible to obt
the segment potentials. The value of theu8(r ) is adjusted
such that the sum of the densities equals unity, and as soo
the segment potentials become consistent with the segm
densities, a fixed point is obtained. For such a SCF solu
it is straightforward to analyze the total interaction energy
the system,
8-4
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E~T!5
kT

2 (
x

(
x8

(
r 51

M

xxx8rx~r !^rx8~r !&L~r !. ~17!

It is also easy to compute the radius of gyration,

Rg
25

4p

5 S r~1!b851(
r 52

M

r~r !$@b81b~r 21!#52@b81b~r 22!#5% D
(
r 51

M

L~r !r~r !

. ~18!
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The extension of these formulas for calculations with t
gradients is straightforward. These quantities will be p
sented below for a number of systems as a function of
temperature.

B. The simulation technique

In our Monte Carlo simulation we have used the we
known bond fluctuation algorithm@16–19#. We consider one
polymer chain of lengthN. Each monomer unit of the chai
is represented as a cube taking up eight lattice sites o
three-dimensional simple cubic lattice. The bond lengthl bond

can take the values 2,A5,A6,3,A10. There are 108 differen
bond vectors and 87 different angles between bonds.
model the quality of the solvent an interaction potential b
tween nonadjacent monomer units is introduced. We as
an energy« ~for a homopolymer chain! to the interaction of
a given monomeric unit with any other nonadjacent mo
meric unit that is located in the ‘‘first coordination cub
layer,’’ i.e., vectors connecting two nearest neighbors
space belong to the set~2,0,0!, ~2,1,0!, ~2,1,1!, ~2,2,0!,
~2,2,1!, ~2,2,2! including the coordinates that follow from a
possible symmetry operations.

A copolymer chain consists of monomeric units of tw
different typesA andB. Correspondingly, we introduce thre
energy parameters for contacts between different monom
units «AA , «AB , «BB , and also two parameters for intera
tion of monomeric units with solvent molecules«AS,«BS. It
is further worthwhile to emphasize how the number of co
tacts between a monomeric unit and solvent are compu
We interpret each empty elementary site on the lattice a
solvent molecule. In the ‘‘first coordination cubic layer
there are 98 empty elementary cubes, i.e., 98 solvent m
ecules. At the same time one can easily show that du
excluded-volume effects one can put maximally 26 mo
meric units into the ‘‘first coordination cubic layer’’ which
would correspond to the case of a pure ‘‘polymer’’ surroun
ing of a given monomeric unit~no solvent molecules aroun
it!. Taking this into account yields a simple linear formula f
calculation of a number of monomer-solvent contactsnps :

nps598S 12
npp

26 D , ~19!

wherenpp is the number of monomer-monomer contacts.
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We have studied different primary sequences ofA andB
monomer units with 1:1 composition~the fraction of units of
each type is equal to 50%!. The so-called regular block co
polymers consist of alternating blocks ofA and B units of
size L52,4,5,7,9,25, respectively, and a total length of 2
monomers. The sequence of the regular block copolyme
given by (ALBL)xAyBy , where x5 b125/L c and y5125
2Lx. The statistical random sequences were obtained
choosing randomly the type of monomer unit at each po
tion along the sequence.

The specially designed proteinlike sequences used in
simulations and SCF calculations are prepared with a co
ing procedure: we collapse a homopolymer chain into
dense globule state and then examine a given snapshot
such an instantaneous conformation, we assign the seg
type A to the monomer units that belong to the surface la
and the segment typeB to those that lie inside the dense co
~for details of this procedure see our previous papers@5–7#!.
The proteinlike sequences were shown to have long-ra
correlations along the chain@33#. It was also shown that the
primary sequence has ‘‘memorized’’ some of the features
its ‘‘parent’’ conformation@7#.

The standard motion of the chain is implemented by lo
jumps of monomer units by one lattice site in the six possi
lattice directions. One Monte Carlo step~MCS! corresponds
to N attempted monomer unit moves. The moves are
cepted according to the usual Metropolis rules.

The simulations are performed in the following way. F
each temperature, we start from a self-avoiding walk c
figuration and let the chain equilibrate during 103106 MCS.
Interaction parameters were fixed and will be discussed
low. The averaging was performed overM runs with inde-
pendent starting self-avoiding walk configurations. Typica
M was equal to 20. The number of MC steps of the simu
tion runs is chosen in such a way that during the second
of the run~the next 103106 MCS! the mean values of mea
sured quantities did not differ from the ones found in the fi
half of the run within the error of measurement. Such pro
dure, however, cannot exclude freezing in metastable con
mations at low temperatures, where the acception rate
elementary moves goes down drastically. This is the rea
why we have performed computer simulations only in t
vicinity of the coil-globule transition temperature and not
temperatures far below this transition temperature.
8-5
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For a given sequence we run this procedure for a num
of temperatures in order to find out where the transition
gion is. Then we collect a detailed energy and gyration rad
histogram at these points in the transition region and perf
multiple histogram reweighting@27,22# to obtain a reliable
estimate of the full transition curve.

Parameter choice and the temperature scale

The central idea behind our investigation is to obtain
formation about the globule-to-coil transition in copolyme
with preset primary sequences. In a number of steps w
increasing complexity in the system we hope to obtain inf
mation about the stability of proteinlike molecules. The fi
step in such a process is to consider copolymers compose
just two types of segments. The parameter choice is cho
such that there are polar and apolar segments.

In the MC simulations the following parameter set w
used:N5250,«SS50, «AA50, «BB521 kT, «AS5226/98
kT, and«BS526/98 kT. Here we assume that these para
eters are purely enthalpic in nature. The reason for the
cial quantities for the last two parameters will become cl
when we map this parameter choice onto Flory-Hugg
~FH! x-parameters that are needed in the SCF calculati
Without losing generality we set the Boltzmann constank
51, which fixes the temperature scale, and use the nume
values as mentioned above forT51. To obtain the relevan
FH parameters we consider first a system of monomer u
of two types in both the models. The complication that ari
is that the coordination number is not a constant in the M
simulations, i.e., it depends on the type of segments
rounding another segment. Keeping this in mind we write

xxy5
1

kT FZxy«xy2
~Zxx«xx1Zyy«yy!

2 G , ~20!

whereZxy is the coordination number ofx units surrounding
y units. From the above we know that there are two poss
coordination numbers in the system: it takes the value of
for polymer segments surrounding other polymer segme
densely, and 98 when only solvent molecules are invol
in the nearest neighbor contacts around a polym
segment. Thus,xAB5$26302@26(21)12630#/2%513,
xAS5@98(226/98)2(263019830)/2#5226 and xBS
5@98(26/98)2(26(21)19830)/2#539. Again, the speci-
fied FH interaction parameters will be used forT51, and
they will be modified when the temperature differs from th
value. To mimic the simulation model as closely as poss
in the SCF calculations we setl159/26 andb8/b527/26.

One may argue that in the SCF model, where the fi
order Markov approximation was used in the chain statist
a lower number of beads along the chain should be chose
order to correctly compare to the MC simulations. Howev
as we like to perform the calculations on exactly the sa
primary sequences as was done in the MC simulations,
pecially as it comes to the proteinlike primary sequences,
have chosen to useN5250 in the SCF calculations also.
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III. RESULTS AND DISCUSSION

Results of both SCF calculations and MC simulations w
be presented for exactly the same polymer sequences.
of all there are the regular block copolymers with the gene
structure (ALBL)xAyBy , where x5 int(N/2L) and y5N/2
2xL. Indeed, the so-called proteinlike sequences as ge
ated by the MC technique mentioned above were also u
in the SCF calculations. In principle, we are interested in
generic differences between the designed copolymers and
random ones. To eliminate anomalies due to uniquenes
particular sequences, we have also averaged over 17 ran
and over 17 proteinlike sequences, respectively. We will s
with presenting the SCF results, then discuss the MC d
and compare those to the SCF ones. We usekT51 and all
plotted quantities are dimensionless, i.e., length scales a
units of b.

A. SCF results

The main point of interest is the behavior of the copo
mer chains as a function of the temperature. In particular
will discuss the interaction energy per segment and the
of the molecules. In the SCF results the average interac
energy per segment is normalized to the value at high t
perature and thus this quantity approaches zero at high
perature. In this way we are able to return to a similar ene
scale as in the MC simulations.

In Fig. 1, the normalized interaction energies per segm
are plotted as a function of the temperatureT for the primary
sequences used. Figure 2 shows more detail for the ran
and proteinlike sequences. Here we have assumed tha
interaction parameters in the SCF model are inversely p
portional toT and thus they are purely enthalpic. The rando
and proteinlike curves are averaged over 17 different prim
sequences. In Fig. 2 the two curves are replotted toge

FIG. 1. The temperature dependence of interaction energy
monomer for the regular~labeled by a number!, proteinlike (P),
and random~R! copolymers as obtained from SCF calculations a
given by Eq.~17!. The Flory-Huggins interaction parameters a
assumed to be enthalpic quantities. The regular block copolym
are labeled with their value forL. The P and R curves are the
average of the results for 17 different proteinlike and random
quences, respectively.
8-6
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with two typical examples of particular results found for tw
specified sequences. It is seen that the individual curves
viate only a little bit from the average. In all cases inves
gated the deviations from the average were significa
smaller than the difference between the random and the
teinlike sequences. Inspection of Figs. 1 and 2 shows th
is possible to distinguish four regions in each curve.

~i! At low temperature, in the collapsed state, the energ
constant and this state may be called the ground state.
increasing block sizeL for the regular copolymers we notic
that the ground state energy decreases. The reason for t
that small blocks along the chain cannot avoid internalA-B
contacts. The internal structure of theL52 globules is a
layered one. The molecule core consists of alternating~lat-
tice! layers filled byA and then byB units. For larger block
lengths the regions rich inA and B are larger than a single
lattice layer and therefore the ground state energy can
come lower. The ground state level of a random sequenc
significantly higher than that for a proteinlike chain. This
because in the proteinlike sequence there are longer stre
of nonpolar units that can efficiently pack in the interior
the dense globule than in the random sequences. Here
thus notice that the coloring procedure results in chains
significantly differ from their random analogues.

~ii ! At slightly higher temperature, fluctuations in cha
conformations become possible and the compact mole
undergoes internal rearrangements. As we will see below
chains remain rather compact but the interaction energy
segment increases more or less linearly with the tempera
T. We refer to this regime as the molten globule state@34#.
There is not a strongL dependence for the onset of the mo
ten globule domain. When more entropic restrictions
locked into the ground state~i.e., for smallerL), the system
enters the molten globule state easier. The longer the b
length the larger the temperature range over which the m
ten globules state is found. Both the proteinlike and the r
dom copolymers have a well-developed molten globule
gime. For proteinlike chains this region is wider than t

FIG. 2. This plot is similar to Fig. 1 but only the curves fo
random and proteinlike sequences are plotted. Individual rand
sequences are indicated byR1 andR2. Similarly, P1 andP2 de-
note curves for proteinlike sequences. The curvesP and R ~aver-
aged over 17 sequences! are taken from Fig. 1.
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corresponding region for a random copolymer chain, ag
because the latter has, on average, shorter stretches of
polar chain segments.

~iii ! At the end of the molten globule state there is a su
den jump in the interaction energy. At this temperatureTtrans
the coil to globule transition is found. In several cases, es
cially for the regular polymers with large blocks, the tran
tion appears as a first-order-like transition. The transit
temperature increases with increasing block length. For
regular block copolymers the jump appears especially la
for chains with intermediate block lengths. Below we w
comment on the cooperativity of the transition in relation
the assumptions made in the SCF theory. Significantly,
find that the proteinlike and the random copolymers hav
very small jump~if any! at the coil to globule transition. The
transition thus tends to become continuous with increas
levels of heterogeneity along the chain.

~iv! Finally, at very high temperature the chains are sw
len and behave as a random~or even swollen! coil. In such a
chain the majority of the interactions are between polym
units and solvent molecules. This state does not depend
the primary structure of the chains and, therefore, the in
action energy levels off to a constant value, which due to
normalization is equal to zero.

In Figs. 3 and 4 we collect the corresponding radii
gyration as a function of the temperatureT. Again the corre-
sponding curves plotted in Fig. 4 show that the deviatio
that exist within one sequence type is small as compare
the deviations in the shape and position of the curve betw
sequence types. We have corrected both the SCF results
the computer simulation results~see below in Figs. 8 and 9!
for the radius of gyration to a system withZ56 and bond
length equal to segment diameter. The relationRg}Al1 @35#
gives us that theRg’s found with the SCF method should b

multiplied by A( 26
9

1
6 ). The Rg’s from the MC simulations

have to be divided by the average bond length: 2.7. Typic
one would expect the chains to have the largest size at

m
FIG. 3. The radius of gyration versus the temperatureT as found

in the SCF calculations also plotted in Fig. 1. The labeling of
curves is similar to Fig. 1. The Flory-Huggins interaction para
eters were taken to be enthalpic quantities.
8-7
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temperature, where the chains are swollen coils, and
smallest size at low temperature~ground state!. Inspection of
Fig. 3 shows that, as expected, all curves tend to have
same coil size for large temperature. There is a grad
change inRg(T) in the swollen regimes. For smallL the
curves are rounded whereas for largerL the limiting value is
found almost directly after the coil to globule transition. A
the coil to globule transition temperature the size decrea
sharply with decrease inT. For the regular block copolymer
the coils collapse almost immediately to a compact size. T
fact can be understood as a consequence of effective stiff
of a copolymer chain: one can represent a regular multibl
copolymer chain as a rather stiff homopolymer chain with
large and highly anisotropic effective monomer unit equiv
lent to one fullALBL block in the original copolymer chain
This effective stiffness due to renormalization of the mon
mer units leads to sharper coil-globule transition@3#. The
distinction between the ground state and the molten glob
is not clearly visible from inspection of the radius of gyr
tion. This is in agreement with the notion of a molten globu
as a dense weakly ordered structure@34#. The size at low
temperature decreases with decreasing block length. The
son is that a structure formed by a regular block copolym
with large block lengthL tends to be a collapsed core with
swollen corona with solvated loops. For smallL, no loops
can develop. Interestingly, forL525 a minimum in the ra-
dius of gyration is found as a function of the temperatu
This minimum is attributed to the miscibility ofA in B ~and
B in A) at intermediate temperatures. Due to this the len
of the loops tend to go through a minimum. For the rand
and the proteinlike sequences, the radius of gyration
creases relatively smoothly with the temperature. The va
tion in block lengths present in both the random and
proteinlike sequences is responsible for the more gradua
crease in the size of the molecule.

The cooperativity of the coil to globule transition as se
in spherical lattice with one gradient is overestimated. B
cause of the spherical symmetry, segments on either sid

FIG. 4. As Fig. 3, but now only for the random and proteinli
sequences, both the averages and the individual sequences are
the same computations as in Fig. 2.
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the center of the lattice always cooperate. This is not reali
and, ideally, no symmetry would be enforced. Computatio
ally, this is not feasible. To obtain insight in the cons
quences of the implied symmetry, we have performed ca
lations on a cylindrical system with two gradients. Th
system has one gradient along the axis of the cylinder
one in the radial direction. As in the one-gradient SCF the
the chain is forced to go through a preassigned coordin
that we denote as the origin (0,0) at the central lattice la
on the symmetry axis of the lattice. In addition, the positi
of one of the ends of the chain is restricted to coordina
(z8,0), wherez8.0 is a coordinate on the symmetry axis
the coordinate system. In this way rotational degeneracy
chain conformations is partly removed from the calculatio

The impact of the extra degree of freedom in a tw
gradient SCF approach is illustrated in Fig. 5 for the ca
L55. In Fig. 5 the normalized energy per segment as a fu
tion of the temperatureT is plotted for the two versions o
the SCF theory. As anticipated, the transition is continuou
the two-gradient case. Note as well that the transition te
perature is not the same in both types of calculations. T
reason is that the extra degree of freedom allows a m
efficient lowering of the free energy of the coils. In oth
words the molecules tend to be more stable at any temp
ture. This is thus also reflected in the increase of the tra
tion temperature. The conclusion is that the coil to glob
transition is likely to be a continuous transition for the
types of regular copolymers.

B. Computer simulation results

We discuss the results of Monte Carlo computer simu
tion for copolymers with different primary sequences. B
cause it is impossible to sample reasonable statistics in d
globular state using local moves only, we have studied
transition region and performed the histogram reweighting
slightly lower temperatures. In our simulation we can calc
late, e.g., the energy, the gyration radius, the mean clu
size~number of monomeric units of typeB, which belong to

rom

FIG. 5. Normalized segmental energy as a function of the te
peratureT for a regular block copolymerL55 as found by SCF
calculations for the one-gradient and two-gradient approache
indicated.
8-8
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the dense core! and the fluctuations of all these quantitie
For the sake of comparison we concentrate here on the
two of these quantities.

In Fig. 6, the segmental energy is plotted as a function
the temperatureT for the regular block copolymers and th
averaged random and averaged proteinlike sequences, w
in Fig. 7 the results of the simulations are shown for t
individual random and proteinlike primary sequences ide
cal to those in Fig. 2. Completely in line with the SCF resu
we find that the transition temperature increases with bl
sizeL. All curves in this figure tend to go towardsE/N50
for large temperatures. This is the natural consequence o
choice of the parameters: theA andB monomers have inter
action potentials with the solvent that are equal in magnit
but differ in sign. So unlike the SCF calculations, a norm

FIG. 6. The interaction energy per monomer unit for all prima
sequences is plotted versus the system temperature~MC computer
simulation results!. Regular block copolymers are labeled with th
value forL. The proteinlikeP and randomR curves were obtained
by averaging the data obtained for 17 different sequences.

FIG. 7. This plot is similar to Fig. 6 but only curves for rando
and proteinlike sequences are plotted. Individual random seque
are indicated byR1 andR2. Similarly, P1 andP2 denote curves
for two particular proteinlike sequences. The curvesP andR ~aver-
aged of 17 sequences! are taken from Fig. 6.
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ization to high temperatures is not needed.
The histogram reweighting results are expected to be

curate only in the vicinity of the transition region, but not
very low temperaturesT. The reason for the latter is that
rare event of finding a low energy while simulating in th
transition region determines the energy level of the grou
state. This then results in an inaccurate estimate for this li
because the true ground state level was probably not rea
at all during the simulation. The molten globule regime
found in SCF calculations is relatively more difficult to re
trieve accurately in Monte Carlo simulation because of
relatively poor statistics for compact globules. Moreover,
conformations of compact globules obtained in MC simu
tion at low temperatures correspond to the case of the
called crumpled globule and not to the equilibrium one@36#.

With this in mind, we notice that the shapes of theE(T)
curves in Fig. 6 are qualitatively similar to those found
SCF calculations~Fig. 1!. In line with the SCF results, the
block copolymers have a more cooperative coil to glob
transition than the random and proteinlike sequences. A
the transitions of the proteinlike sequences are more gra
than those of the random ones. Finally, a good agreem
between the SCF and MC results is found for the order of
transition temperature for the random and proteinlike
quences in relation to the regular block copolymers. Intere
ingly, the difference in interaction energy per segment
tween the high and low temperature limits is also not qu
the same in both methods. Apparently, the number of c
tacts between different type of segments in the ground s
is not the same in both methods.

One of the differences between both methods is the m
shorter molten globule regime in the MC results. In the S
results, the interaction energy was found to increase line
with the temperature in this regime. In MC results this r
gime can be indicated for regular copolymers and is be
visible for random and proteinlike copolymers, but it
sharper and shorter than that in SCF. We cannot decide a
moment the reason for this disagreement: whether it is o
due to the relatively poor statistics of the MC method in th
regime, or also due to an inherent problem in the SCF c
culations. Another problem, obviously, is the huge differen
in the temperature scale between both of the computatio
methods. We will return to this point below.

As to the radii of gyration, the counterpart of Figs. 3 a
4 are Figs. 8 and 9, respectively. Quantitatively, the result
both the methods are again in good agreement for both
collapsed and coil states. With respect to the coil-glob
transition, it is of interest to point to a few pertinent featur
in the MC plots which compare favorably with the SCF r
sults. One of these is the value of the radius of gyration at
temperature just aboveTtrans. This value decreases signifi
cantly with block sizeL; more generally it decreases wit
decreasing transition temperature. This may be attribute
the fact that for chains that have manyA-B connections
along the chain~e.g., smallL), the ~renormalized! solvent
quality just above the transition is still rather poor. It takes
significant temperature increase before the good solven
gime is reached. Clearly, these aspects are present in
computational methods. Not surprisingly the size of the glo

es
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J. M. P. van den OEVERet al. PHYSICAL REVIEW E 65 041708
ules is only a weak function of the primary sequence. A
consequence the jump in radius of gyration decreases
block sizeL. Again, in line with the findings of the SCF
calculations, the presence of longA loops, possible in the
primary sequence with highL, results in a slightly higherRg
of the ground state.

The proteinlike and random sequences show also in
Rg(T) plot a less steep increase at the transition tempera
This is completely in line with the decreased cooperativity
the transition as found from the interaction energy cur
discussed above. Upon close inspection however, the s
in the transition region for the proteinlike copolymer is a
proximately half of that for the random sequence. This is
agreement with SCF calculations, although the SCF res
show this trend to be more pronounced. Again this may
attributed to the differences in the temperature scale as
will show below. The deviation within a type of primar

FIG. 8. The radius of gyration versus the temperatureT as found
in the MC simulations are also plotted in Fig. 6. The labeling of
curves is similar to Fig. 6.

FIG. 9. As in Fig. 8, but now only for the random and protei
like sequences, both the average and the individual sequence
from the same computations as in Fig. 7.
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sequence as plotted in Figs. 7 and 9 proves that both
simulations and the SCF calculations are sensitive in a c
parable way to the primary sequence. This shows that b
the computation tools are consistent and have a predic
power.

There is a seeming disagreement between the pre
computer simulation results and those published in R
@5,7#. In these papers, the transition for random copolym
is less abrupt than that for proteinlike chains. This is oppo
to the trend we find here. The reason for such a seem
disagreement is the shorter chain length used in the pre
work (N5250 instead ofN5512 in Refs.@5,7#!. There are
two physical factors that influence the sharpness of the t
sition: the average block length and its dispersion. An
crease in the average block length leads to a more coop
tive and, therefore, sharper transition. A larger dispersion
the block length gives a smoother transition. The aver
block length and the dispersion of the block length incre
with chain length for both types of sequences. Apparen
for random copolymers ofN5512 monomeric units it is the
first factor that plays a dominant role, while for the shor
chain of N5250 monomeric units the second factor dom
nates. On the other hand, as it was shown in Ref.@33# the
correlations in the primary sequences of proteinlikeAB co-
polymers obey the so-called Levy-flight statistics. Th
means that very long blocks can occur in the primary
quence if the total length of the chain allows this to happ
Such long blocks will increase the sharpness of the tra
tion. This can be realized only for rather long chains~i.e., for
N5512 chain in Refs.@5,7#! while such long blocks prob-
ably never occur forN5250 chain.

It is of interest to investigate the transition temperature
a function of the block lengths as found in both methods.
have determined the transition temperature as the temp
ture where the heat capacity

CV5
^E2&2^E&2

kBT2
~21!

has its maximum. From the curves in Fig. 1 transition te
peratures can be found by taking the maximum derivative
the curves. In Fig. 10 these quantities are collected. In
graph we included block lengths up toL5125 in the SCF
calculations. For the SCF computations a sigmoidal shap
found in a linear-log plot. Although much less clear, th
shape of the curve is consistent with the MC data. At smaL
value the transition temperature is relatively independen
L. For intermediateL value we find that the transition tem
perature scales logarithmically withL. This regime is lost for
very highL where there are just two blocks in the molecu

In Fig. 10 the transition temperatures of the random a
proteinlike sequences are also included. The random
quences show a transition temperature that is equivalen
theL54 regular chains as found by means of MC simulati
and to slightly higher value ofL56 in the SCF approach
We note that the number average block size of random
quences is just 2. Apparently, the transition temperature
determined by the longer block lengths. A similar pheno
enon is observed for the proteinlike sequences. Again,
are
8-10
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COIL-GLOBULE TRANSITION FOR REGULAR, . . . PHYSICAL REVIEW E65 041708
transition temperature is much higher than could be expe
from the number average block length: the number aver
length is around 3.7 whereas the transition temperature
curs around theL57 ~MC results! or L512 ~SCF results!
position for regular chains.

Quantitative agreement for the temperature scales ca
be seen because there remain significant differences bet
the two computation techniques. Ideally, we would have
temperature in both the models that can be directly co
pared. However, there are a few intricacies that can be tra
back to fundamental differences between the two metho

~i! In the MC simulations the through-bond contacts a
irrelevant for the statistical weight of a given conformatio
For this reason these bonds are not counted. In the
model as specified above, the energetic contacts are cou
in the system as if the segments are detached from e
other. The average surrounding of each segment is cou
as if the bonds were not there. Of course this is not corr
but it simplifies the calculations. Typically this error is co
sidered to be a minor point in SCF models and therefore
approximation is usually accepted. In principle, one can
orously correct for this in a mean-field model. Alternative
one can effectively deal with it by renormalizing the coord
nation number used in the calculations. Equivalent to this
can be dealt with by redefining the FH parameters that ar
the system atT51. Recall that the number of possib
segment-segment contacts in the simulations is 26, an
most two of these are through-bond contacts. For this rea
we did not incorporate a correction and accept a sm
change in the temperature scale.

~ii ! The second problem originates from the fact that
the bond-fluctuation model it is possible that the bond len
varies, whereas in the SCF model this is fixed. As in
bond-fluctuation model there is no energy penalty for
variation in bond length, it will tend to be large in goo

FIG. 10. The transition temperatureTtrans as a function of the
length of the blocksL as found in MC simulations~open square, left
ordinate! and in SCF calculations~open circles, right ordinate!. In
the SCF results the temperature is defined by taking the Fl
Huggins interaction parameters to be enthalpic quantities. The
sition temperature for the random sequences and the protei
sequences as found with the respective methods are indicated b
filled triangles.
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solvent conditions, and relatively small in bad solvent co
ditions. The bond length variations are a seat of entropy
present in the SCF model. To correct for this, we sho
write the FH parameter as a free energy parameter.

~iii ! The third problem is due to the difference in siz
between a polymer segment and a solvent molecule.
may argue that in the above translation between the en
parameters as used in MC to the FH parameters this
accounted for. However, there remains the problem that th
must be some entropy associated to the difference in
between these units. Again, this problem can in the first
proximation be lifted by suggesting that the FH paramet
are free energy parameters.

Especially the latter two problems seriously frustrate o
attempts to compare both methods quantitatively as to
temperature where the transitions take place. In an attem
do this more quantitatively one has to estimate how the th
FH interaction parameters are to be split up into entha
and entropic parts. Both problems under consideration
not likely to affect theAB interaction parameter. This on
can be considered enthalpic as it is. The other two, howe
must be corrected by a2DS contribution. One should real
ize, however, that points~ii ! and ~iii ! are related: when the
solvent molecules are of the same size as the polymer u
it would be hard to come up with a method that allows t
bonds to fluctuate without introducing serious packing pro
lems. In a densely packed phase with polymer units~the
reference! there are just six bond directions~all of length 2!.
Alternatively in the dilute case there are 108 bonds a
therefore the correction should be of the order
2 ln(108/6). With this correction we can compute the F
parameters as a function of the temperature:

xAB513/T, ~22a!

xAS5226/T2 ln~108/6!, ~22b!

xBS539/T2 ln~108/6!. ~22c!

Because of the intrinsic differences we have to accept so
disparity in temperature scales in between both methods.
expect that a better comparison of the temperature scale
be obtained by using Eq.~22! to calculate the interaction
parameters.

IV. OUTLOOK

From the above it is clear that the two computational te
niques give qualitatively similar results for the coil to glo
ule transition of AB copolymers. Both techniques hav
strong points, but also have their weaknesses. Although
principle the MC technique is more exact, in practice co
putational restrictions often impede the theoretical adv
tage. This is particularly evident when information is need
for compact globules. The SCF method is computationa
very inexpensive but has the intrinsic problem that it is i
possible to investigate individual conformations. Clearly t
methods complement each other. This means that one
use SCF calculations to investigate the sequence and pa
eter space efficiently and save computer time such that

y-
n-
ke
the
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simulations can be performed on more interesting system
As there is qualitative agreement on the behavior of

coil to globule transition in the bulk, it will be of significan
interest to apply both methods to the more challenging pr
lem of AB copolymers at interfaces. This problem has s
eral aspects. First the adsorption of the chains from the b
onto the surface needs to be investigated. For this it will
important to measure the free energy as a function of
distance from an adsorbing interface. Second, an inter
often induces structural changes or unfolding transitio
These and other aspects are now subject of investigatio

V. CONCLUSIONS

We have analyzed the coil-globule transition of copo
mer systems by two computationally very different metho
namely, SCF calculations and MC simulations. The t
methods complement each other. The SCF technique is c
putationally fast and captures the qualitative features ra
well, as proven by the more exact MC results. Due to
differences in the methods there exists a fundamental p
lem with comparison of the temperature scales in both m
ods. We have not studied here the finite size effects@37# so
that the extrapolation to infinite chain length is not yet ava
able.

Detailed information is obtained for the coil to globu
transition of copolymers with two types of segments. T
transition temperature was found to be roughly an expon
tial function of the block length of regular copolymers. Th
R.

ys

c.

,

ry

rt
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type and number of segment-segment contacts in the gro
state were recovered in SCF method showing that this qu
tity is well defined for a particular copolymer primary s
quence. It was not possible to sample the ground state in
simulation using only local moves. The cooperativity of t
transition has been shown to be high for regular block
polymer molecules. This is explained by renormalization
effective monomer unit@3# in the case of monodispers
blocks. The cooperativity is lower for the random and pr
teinlike sequences because of the polydispersity of the b
length. Further, it was shown, in agreement with previo
results@5,7#, that the globular state for proteinlike sequenc
is more stable than that for statistical random copolyme
Beside a ground state and an unfolded coil state we h
recognized a molten globule state that appears most
nounced for the proteinlike sequences. Since proteinlike
quences behave randomly, the calculations thus confirm
previous findings@5,7# that the proteinlike molecule can in
herit some information from the parent conformation used
define its sequence.
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