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The coil-globule transition has been studied#eB copolymer chains both by means of lattice Monte Carlo
(MC) simulations using bond fluctuation algorithm and by a numerical self-consistent8€&E method.
Copolymer chains of fixed length with andB monomeric units with regular, random, and specially designed
(proteinlike primary sequences have been investigated. The dependence of the transition temperature on the
AB sequence has been analyzed. A proteinlike copolymer is more stable than a copolymer with statistically
random sequence. The transition is more sharp for random copolymers. It is found that there exists a tempera-
ture below which the chain appears to be in the lowest energy &atend state Both for random and
proteinlike sequences and for regular copolymers with a relatively long repeating block, a molten globule
regime is found between the ground state temperature and the transition temperature. For regular block co-
polymers the transition temperature increases with block size. Qualitatively, the results from both methods are
in agreement. Differences between the methods result from approximations in the SCF theory and equilibration
problems in MC simulations. The two methods are thus complementary.
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[. INTRODUCTION be completely stopped and unimolecular objects are formed
that have a dense core and a solvated corona. Typical bio-
Macromolecules composed of a single type of segmentipgical examples are globular proteins.
i.e., homopolymers, behave as fractal objects: the radius of The coil-globule transition in heteropolymers has been
gyration Ry of the molecule scalefl-3] with N repeating  studied by many authors in recent years using both analytical
units along the chain aRy<N“, wherea<1. The scaling techniques and computer simulatigds-13]. One of the mo-
exponent depends on the polymer concentration and the sdivations for these studies is the direct link to protein stabil-
vent quality. When the chains are in the dilute regime, i.e.jty. Questions regarding the conformational stability of these
when the interchain distance exceeds the coil size, the exporolecules in bulk and the correspondirio)stability at
nent decreases with decreasing solvent quality. In a gooliquid-liquid or at solid-liquid interfaces remain largely un-
solvent the chains are highly swollem=~0.6. Under ideal or answered as yet. One of the reasons for this is that there are
0 conditions the coils are Gaussian ang=0.5, whereas few theoretical approaches that can be used to systematically
upon worsening the solvent quality below th@oint the coil  and effectively investigate these phenomena.
collapses to a globule witlk=1/3. This last transition is Our purpose is to launch a line of research aimed at re-
referred to as the coil-globule transition. For homopolymerssolving some of the issues regarding the conformational
the collapse transition is directly followed by macroscopicproperties of heteropolymers, especially in interfacial sys-
phase separation because the collapsed chains also attré®ms. In the first step it is necessary to select theoretical tools
each other. and appropriate models for these purposes. The testing
For macromolecules composed of more than one segmegtound for such an investigation is the study of the coil-
type, i.e., copolymers or heteropolymers, the coil-globuleglobule transition of heteropolymers in a dilute solution. The
transition and phase separation are usually not directlyext step is to apply similar tools to interfacial systems. For
coupled. The uncoupling occurs especially when the solvertbvious reasons, it is not workable to include the full com-
is selective for the various units along the chain. The segplexity of real block copolymer systems. On the other hand,
ments for which the solvent is poor will cluster into a denseit is necessary to include in the model the fundamental fea-
core and solvated segments will tend to accumulate on thiires. Arguably, the essential first step is to use heteropoly-
outside of the globule. These segments on the outside mayers with two types of polymer unit, hydrophili@) and
protect the system from macroscopic phase separation. lnydrophobic B), as model molecules. Therefore, the coil-
principle, some interchain aggregation remains possibleglobule transition in dilute bulk solution of three types of
Similarly, as in, e.g., surfactant systems, copolymer chaingeteropolymers, regular copolymers, random copolymers
may aggregate into aggregates of finite size. If the protectioand “proteinlike” [5,7] copolymers, was investigated. Spe-
process is sufficiently effective, interchain aggregation mayifically we are interested in the dependences of the transi-
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tion temperature on the primayB sequence distribution. In  section we will specify the necessary details of the two meth-
particular we are aimed to find the influence of the primaryods. Then we present some key results for both methods. In
structure on critical properties of copolymer chains and théhe discussion the focus will be twofold. One of the goals is
role of long-range correlations in the primary structure ofto obtain more knowledge of the coil-globule transitions for
proteinlike copolymers. Using two computation techniquesvarious types of copolymers. The other goal is to compare
for investigating the problem of the coil-globule transition the results of the two approaches. At the end an outlook and
for copolymers with preset primary sequence, we can disSOMe conclusions are presented.
cover how both methods perform for this problem and how
they complement each other. We limited our investigations to Il. COMPUTATIONAL ASPECTS
three types of sequences mentioned above. Some related MC
results for “random block copolymers” have already been
discussed elsewhef&]. The self-consistent-field approach is a well-known
The two models used are necessarily rather primitive. Efmethod in the field of inhomogeneous polymer systems. In
ficiency considerations prompt us to use models that emploprinciple, it amounts to solving the Edwards diffusion equa-
lattice approximations. More specifically, we use a numerication in a lattice discretization. This method has already been
self-consistent-field SCH theory and Monte CarldMC) used for obtaining the properties of a single chain in various
simulations. The motivation for the use of SCF tools is thatsolvent qualitie$2]. As a first approximation we can assume
the most sophisticated models of polymer adsorption are ahat the chain of interest is spherically symmetric, and thus
this type[14,15. The SCF method is based upon an approxi-the Edwards diffusion equation should be solved in this ge-
mate partition function of the system from which all corre- ometry. Second, one can consider the properties of a central
sponding thermodynamic quantities are computed directlychain with the constraint that segment number 1 is at the
Not all excluded-volume correlations are included: the poly-center of the coordinate system, and that the remainder of the
mer molecule is modeled as a Markov chain. Especially forchain is floating around this “grafting” point as a one-armed
the study of proteins that have a unique tertiary structurestar. At the center it is then possible to account for the ex-
SCF techniques are not optimal. However, we will show thattluded volume of the grafting segment by not allowing other
the current SCF technology can be extended so that sonsegments of the chain to enter the grafting coordinate. This
important features of the conformations of heteropolymerdeads to nonhomogeneous potential fields and also nonhomo-
are within reach. geneous segment distributions of the central chain. Using
The motivation for using Monte Carlo simulations, and this method one can obtain the swelling of the chain in good
especially the bond-fluctuation modgl6—19, is that this  solvent and retrieve basically the Flory result that the radius
method has successfully been used to analyze various aspeofsgyration is proportional to the degree of polymerization
of the coil-globule transition in homopolymé20-23 as in the power 0.41,30]. The grafting of the end in the center
well as heteropolymdi5—7] chains. By means of this model is not a serious problem in the thermodynamic limit, but it is
the adsorption of copolymer chains with different primary not allowed for the present class of problems. We want to
structures on a flat surface has been also stufizddl A know the conformational properties of relatively short co-
strong point of MC simulations is that all the excluded- polymers and with specified primary sequence. For this rea-
volume correlations are included: the chain is fully self-son we apply a recently developed alternative SCF procedure
avoiding. This type of exactness has its price: a statisticallghat yields[30] RyeeN%>%2
sound solution is achieved only after a very large number of Before we discuss the details we first outline the strategy
trial steps. In other words, the simulations are very time conef the calculations. The key idea is that not an end point is
suming and in practice it is not always possible to equilibratefixed to the center of the coordinate system, but we allow
the system in all aspects; the sampling of conformations irany segment in the chain to be there. It is clear that not every
densely packed systems is difficult. We have used a multiplsegment in the chain has the same probability to be a central
histogram reweighting techniqu@5-27 to extrapolate to segment. Indeed, the proper statistical weight must be found
the behavior of the chains away from the transition regiorfor a given segment to be at the center. When some interior
[21-23,28. Well-equilibrated points near the coil-to-globule segment in the chain is at the center, the chain is thus mod-
transition were used for this. This approach proved to giveeled as a two-armed star, with two arms typically of unequal
satisfactory results. More efficient algorithms for samplinglength. Thus, in our calculations we will allow only those
the conformational statistics in dense systems will be needecbnformations which have exactly one of its segments at the
to obtain direct results for the dense globules. Such improvecenter of the system. All other possible conformations, i.e.,
ments have been suggested recef®9]. In this paper we chains that do not visit the center are disregarded. As in the
have used a standard implementation of the bond fluctuatioane-armed star discussed above, the fact that the chain is
model. Some thermodynamic quantities are readily comeffectively grafted at the center has the effect that the en-
puted, such as the average energy in the system, or the mesemble averaged chain density will be relatively high near
size of the polymer chain. Other quantities, such as the erthe grafting point. This causes segments to interact with each
tropy and the free energy, are more expensive. We, thereforether. In the spirit of the SCF approach, this interaction gives
have concentrated on the former properties in comparing these to a segment potential. This segment potential is a func-
models. tion of the segment densities on the one hand and it affects
The remainder of this paper is as follows. In the following the segment densities on the other hand. Numerically, a fixed

A. The numerical self-consistent-field theory
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point is found for the potential and density profiles within the Differences in segment densities are allowed between layers.
constraint that the system is incompressi(@# lattice sites If the layers have spherical symmetry, there is only a gradi-
are filled either by polymer segments or solvent molequles ent in the radial direction. We refer to this as a one-gradient
Such a fixed point is the SCF solution. A typical SCF solu-SCF theory. Additionally, a two-gradient SCF calculation is
tion usually represents the equilibrium density distribution.ysed. The two-gradient SCF theory is applied in a cylindrical
When there is more than one SCF solution, it is necessary teoordinate system: the mean-field averaging is done over a
analyze the thermodynamic quantities in order to select thﬂng of lattice sites. This enables gradients both along the
most favorable one. , _ long axis of the cylindefwhich is the symmetry axjsas

_ Below we give some mathematical details of the formal-ye|| a5 in the radial direction. A two-gradient SCF theory is
ism. We choose here to develop the SCF formalism by maks, e reajistic, since it enforces less symmetry on the poly-

ing use O.f lattice fapproximations_._ It is necessary to _speci%er configurations. However, the calculations are much
how this is done in order to facilitate comparison with the '

bond fluctuation model discussed below. We also discuss th
chain propagators and briefly the analysis of the equilibrate

density profiles.

1. The lattice

The space is discretized such that it is represented by a
of lattice sites with volumeb®. It is assumed that in this

lattice the layers exist in which the segment densjtsob-

ability that a segment of a given type occupies a site of thi
layen is constant throughout this layer. In this layer we then
use a mean-field approximation. In effect, the sites in such
layer are essentially indistinguishable. As the distinction o

S

more CPU intensive. In this paper, we choose to present the
eory concentrating on the one-gradient SCF technique. The
extension to the two-gradient SCF technique is straightfor-
ward (see alsd31]).
We thus consider a spherical lattice. The number of lattice
sites in layers with this topology depends on the distance

SBLtween the layer and the center of the system. Typically we

demand the layers to have the same width of &izAs a
consequence, we allow a layer to have a noninteger number
of sites. This is not a problem because, in effect, the SCF
Hweory is an ensemble method: the average over many copies

of the central chain is computed. The first, central layer,

sites in the layers is unimportant, it suffices to develop thd!0WeVer, is special: its radius is given by. The number of
equations such that only the properties of the layers occuf@itice sites in each layer=1,... M is given by

4
’ 3
3 (b'/b)
L(r)=

if r=1
(1)

4 _
5 Al(r=1)+b'/b~[(r=2)+b’'/b]*} otherwise.

In order to compute efficiently the ensemble average oMC system a polymer segment can have at most 26 neigh-
all possible and allowed conformations of the chain in thisbors. If the MC system would be divided in parallel layers,

lattice it is necessary to specify tlepriori transition prob-
abilities in this lattice. This probability to go from layéeto
j is designated (i]j).

Nr|r+21)=NA(r)/L(r), (2

B if r=1
Mrfr=1)= M A(r—1)/L(r) otherwise, ®
Ar|r)=1—=\(r|r+21)—\(r|r—1), (4)

where A(r) is the outer area of a layer: 4#[b’+(r
—1)b]?/b?. The parametek ;, which specifies the priori

such a surrounded polymer segment would have 8 neighbors
in the same layer and 9 in each adjacent layer. In order to
have our results match the simulation data as closely as pos-
sible we have chosex; =9/26 which matches the coordina-
tion number for densely packed monomers in the simula-
tions. This means that we hawe =27b/26 as the smallest
allowed radius for the central lattice layer.

From symmetry considerations there must exist a relation
between the transition probabilities between two layers and
the number of lattice sites in these two adjoining layers. It is
easily shown that this so-called detailed balance condition is

Ar|r+2D)L(r)=N(r+1|r)L(r+1). (5)

probability to step from a layer to a neighboring one in theln words this equation says that there are as many ways to go
limit of r—oo (flat layers, is a parameter that we can use to from layerr to r+1 as the other way around.
adjust the SCF theory to match the details of the MC

method. The\k; can only be adjusted in the range where

2. The propagator formalism: From potentials to densities

none of the transition probabilities resulting from it are less We assume that for each segment typeA,B,S, whereS

than zero. Ensuring(r|r)<0 gives O<\;=<b’/(3b). In the

is a solvent molecule and andB are segment types of the
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polymer chain, there is a segment potential protilgr). 0 if r=1
Later on we will see that these potentials are functionals of  ¢4(r,s)=

the densities. Here we will show how the segment densities Gi(r.s|1)G(r,sIN)/G(r.s) ~ otherwise,

are computed from the segment potentials. (11)
The full set of possible conformations on the sphericalyith

lattice can be split into two: all conformations that visit the

central layer—we will label this set with the subscriptand Gi(r,81)=Gy(r,5)(G¢(r,s—1]1)), (12)

all other ones, which are labelédlt is relatively straightfor-

ward to compute this latter set by developing the Edwards Gi(r,sIN)=G¢(r,8)(G¢(r,s+1|N)), (13

diffusion equation with the constraint that the potential felt
by any of the segments is infinite in layee=1. Then no
segments are allowed in this layer and freet is available.
The complete set of conformations is also easily generate

whereG(r,s)=G(r,s) except forr=1 whereG¢(1,5)=0.
Obviously the starting conditions are modified accordingly.
Now, the un-normalize@-type conformation distribution is

The difference between the two gives the distribution of the°Ptained by
set of conformations that we are interested in. So, our first
r,s)=o(r,s)— r,s). 14
goal is to obtain both thé and the overall conformation ¢a(1:8)=¢(1,8) = (1) (4
distributions. The normalization of thea-type density profile should be
We introduce free segment distribution functions, definedsuch that exactlyN segments are present in the system:
by p(r,s)=Cq,(r,s) with C given by
L(r)=exd —u,(r)/kT]. (6) N

=c2, E @a(r S)L(T (15

These segment-type-dependent distribution functions are s=1r=

generalized to free segment distribution functions that de-
end only on the ranking number within the polymer chain,
o N (o ey pa(N) =N 10%0(r.8) andpg(n) =214 (1-0A)p(r.9).
s=1,...N: G(r,s)=Ga(r)gs+Gg(r)(1—qg), where ; 4 s
A . . s . The density profile of the solvent molecules is simply
gs is the chain architecture operator which is unity when "
S . . found aspg(r)=Gg(r).
segments is of type A and zero otherwise. The sqﬁ (a
sequence of 0’'s and Y’slefines the primary sequence of the 3. From densities to potentials

polymer chains. _ - ) - oo
The un-normalized density distribution due to all possible, From differentiation of the mean-field partition function it

The overall densny ofA and B units is now given by

and allowed conformations follows from is possible to find an expression for the segment potentials in
terms of the segment densities. This step is well documented
o(r,s)=G(r,s|1)G(r,s|N)/G(r,s) (7)  in the literature and is not repeated h¢82]. The segment

potential is composed essentially of two contributions. The
where G(r,s|1) and G(r,s|N) are chain end distribution first one is an excluded-volume potential(r) which is a
functions that obey the Edwards diffusion equation. In theLagrange field coupled to the requirement that each layer is
lattice approach they can be computed from the recurrencexactly occupied by segments, B, or S:  Z,p,(r)=1.

relations The second one accounts for nearest-neighbor contacts pa-
rametrized by Flory-Huggins interaction parameters
G(r,s|1)=G(r,s){G(r,s—1]1)), 8 - )
X u’
G(r,S|N):G(r,S)<G(r,S+ 1|N)>, (9) kT (r +E Xxx! [<px (r)> px (16)

where the angular brackets indicate a three layer averag&he angular brackets denote again a three-layer average, as
Generally(X(r)) is defined as in Eq. (10). The segment bulk density’, is 0 for segment
typesA andB and unity for segment typ8.
(X()y=N(r|r+21)X(r+1)+N(r|r)X(r) yp y g P
n )\(rlr —1)X(r—1), (10) 4. The SCF solution and its analysis

The above set of equations is closed. From the segment
where X(r) is an arbitrary layer property. Here, we use potentials it is possible to obtain the distribution due toahe
G(0,8)=0, which means that it is impossible to penetrate totype of conformations, as well as the distribution of the sol-
the nonexisting layer=0, and G(M+15s)=G(M,s) so  vent molecules. From the distributions it is possible to obtain
that between laye andM + 1 we have a reflecting bound- the segment potentials. The value of thgr) is adjusted
ary condition. The recurrence relations, E(.and(9), are  such that the sum of the densities equals unity, and as soon as
started byG(r,1]1)=G(r,1) andG(r,N|N)=G(r,N), re- the segment potentials become consistent with the segment

spectively. densities, a fixed point is obtained. For such a SCF solution
The un-normalized density distribution of tfiype con- it is straightforward to analyze the total interaction energy in
formations is found as the system,
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kT v
5 2 2 2 Xoepx(Dpro (D)L, (17)

o =1

E(T)=

It is also easy to compute the radius of gyration,

4 M
% p(1)b’>+ Zz p(r){[b"+b(r—1)1°~[b’+b(r—2)1%
R2= . (18

g M
gl L(r)p(r)

The extension of these formulas for calculations with two We have studied different primary sequence#\aind B
gradients is straightforward. These quantities will be pre-monomer units with 1:1 compositigthe fraction of units of
sented below for a number of systems as a function of theach type is equal to 50p6The so-called regular block co-
temperature. polymers consist of alternating blocks Afand B units of
sizeL=2,4,5,7,9,25, respectively, and a total length of 250
B. The simulation technique monomers. The sequence of the regular block copolymers is
given by (A B )A/By, where x=|125L| and y=125
—Lx. The statistical random sequences were obtained by
choosing randomly the type of monomer unit at each posi-

In our Monte Carlo simulation we have used the well-
known bond fluctuation algorithifil6-19. We consider one
polymer chain of lengtiN. Each monomer unit of the chain

is represented as a cube taking up eight lattice sites on tziapn along the sequence. o i
three-dimensional simple cubic lattice. The bond lergghy The specially designed proteinlike sequences used in the

can take the values »25\@3\/@ There are 108 different §imu|ations and SCF calculations are prepared With a color-
bond vectors and 87 different angles between bonds. TE'd Procedure: we collapse a homopolymer chain into a
model the quality of the solvent an interaction potential be-d€nse globule state and then examine a given snapshot. For
tween nonadjacent monomer units is introduced. We assight!Ch an instantaneous conformation, we assign the segment
an energye (for a homopolymer Cha)rto the interaction of typeA to the monomer units that belong to the surface |a.yer
a given monomeric unit with any other nonadjacent mono-2nd the segment tyg@to those that lie inside the dense core
meric unit that is located in the “first coordination cubic (for details of this procedure see our previous papg+s7]).
layer,” i.e., vectors connecting two nearest neighbors inThe proteinlike sequences were shown to have long-range
space belong to the s€2,0,0, (2,1,0, (2,1,0, (2,2,0, correlations along the cha[i33]. It was also shown that the
(2,2,9, (2,2,2 including the coordinates that follow from all primary sequence has “memorized” some of the features of
possible symmetry operations. its “parent” conformation[7].

A copolymer chain consists of monomeric units of two  The standard motion of the chain is implemented by local
different typesA andB. Correspondingly, we introduce three jumps of monomer units by one lattice site in the six possible
energy parameters for contacts between different monomerigttice directions. One Monte Carlo stédCS) corresponds
units eaa, eag, €pg, and also two parameters for interac- to N attempted monomer unit moves. The moves are ac-
tion of monomeric units with solvent moleculeis,SBs. It Cepted according to the usual Metropolis rules.
is further worthwhile to emphasize how the number of con-  The simulations are performed in the following way. For
tacts between a monomeric unit and solvent are computed ., temperature, we start from a self-avoiding walk con-
We interpret each empty elementary site on the lattice as fgration and let the chain equilibrate during.0¢° MCS.
solvent molecule. In the *first coordination cubic layer” |nteraction parameters were fixed and will be discussed be-
there are 98 empty elgmentary cubes, ie., 98 solvent mo|g\, The averaging was performed owér runs with inde-
ecules. At the same time one can easily show that due tgengent starting self-avoiding walk configurations. Typically
excluded-volume effects one can put maximally 26 monoy, as equal to 20. The number of MC steps of the simula-
meric units into the “first coordination cubic layer” which ion runs is chosen in such a way that during the second half
would correspond to the case of a pure “polymer” surround-¢ the ryn(the next 1< 10 MCS) the mean values of mea-
ing of a given monomeric unino solvent molecules around g req quantities did not differ from the ones found in the first
it). Taklng this into account yields a simple linear formula for -1t o the run within the error of measurement. Such proce-
calculation of a number of monomer-solvent contatis: dure, however, cannot exclude freezing in metastable confor-

mations at low temperatures, where the acception rate of
Nps= gg( 1— %) (19 elementary moves goes down drastic_ally. T_his is the reason
why we have performed computer simulations only in the
vicinity of the coil-globule transition temperature and not at
wheren,, is the number of monomer-monomer contacts. temperatures far below this transition temperature.
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For a given sequence we run this procedure for a numbel 0
of temperatures in order to find out where the transition re- £(T)- E() | /
gion is. Then we collect a detailed energy and gyration radius—
histogram at these points in the transition region and perform 4-
multiple histogram reweightin§27,22 to obtain a reliable 2of = Wils |7./p 25
estimate of the full transition curve. . v
-8

Parameter choice and the temperature scale

The central idea behind our investigation is to obtain in-
formation about the globule-to-coil transition in copolymers 124
with preset primary sequences. In a number of steps with
increasing complexity in the system we hope to obtain infor- T T T T T
mation about the stability of proteinlike molecules. The first 0 10 20 30
step in such a process is to consider copolymers composed o1 T

just two types of segments. The parameter choice is chosen FiG. 1. The temperature dependence of interaction energy per
such that there are polar and apolar segments. monomer for the regulaflabeled by a numbgr proteinlike (P),

In the MC simulations the following parameter set wasand randon{R) copolymers as obtained from SCF calculations and
used:N=250,e55=0, eap=0, egg=—1 KT, epos= —26/98  given by Eq.(17). The Flory-Huggins interaction parameters are
KT, and egs=26/98 kT. Here we assume that these paramassumed to be enthalpic quantities. The regular block copolymers
eters are purely enthalpic in nature. The reason for the spewe labeled with their value fot. The P and R curves are the
cial quantities for the last two parameters will become clearverage of the results for 17 different proteinlike and random se-
when we map this parameter choice onto Flory-Huggingluences, respectively.

(FH) x-parameters that are needed in the SCF calculations.
Without losing generality we set the Boltzmann constiant [ll. RESULTS AND DISCUSSION

=1, which fixes the temperature scale, and use the numerical Results of both SCF calculations and MC simulations will

\éﬂue:r:;;]:gtlsvgegoit;%v; ];?r's:tla{ ;I'ostoebr;alcr)lf trzircglri\é?r:nitge presented for exactly the same polymer sequences. First
of tvf/)o types in both the models The)éom lication that arisesOf all there are the regular block copolymers with the generic
b ' P tructure A B.),A/By, wherex=int(N/2L) and y=N/2

is that the coordination number is not a constant in the MCS

simulations, i.e., it depends on the type of segments sur-_XL' Indeed, the so-called proteinlike sequences as gener-

. . o ..~ ated by the MC technique mentioned above were also used
rounding another segment. Keeping this in mind we write in the SCF calculations. In principle, we are interested in the
generic differences between the designed copolymers and the
random ones. To eliminate anomalies due to uniqueness of
(20) particular sequences, we have also averaged over 17 random

and over 17 proteinlike sequences, respectively. We will start
with presenting the SCF results, then discuss the MC data
and compare those to the SCF ones. Wekibe 1 and all

whereZ,, is the coordination number ofunits surrounding  plotted quantities are dimensionless, i.e., length scales are in
y units. From the above we know that there are two possiblgits of b.

coordination numbers in the system: it takes the value of 26
for polymer segments surrounding other polymer segments
densely, and 98 when only solvent molecules are involved A. SCF results
in the nearest neighbor contacts around a polymer The main point of interest is the behavior of the copoly-
segment. Thus,xag={26X0—[26(—1)+26x0]/2}=13, mer chains as a function of the temperature. In particular we
Xas=[98(—26/98)— (26X 0+98x0)/2]=—26 and xgs  will discuss the interaction energy per segment and the size
=[98(26/98)- (26(— 1)+ 98X 0)/2]=39. Again, the speci- of the molecules. In the SCF results the average interaction
fied FH interaction parameters will be used fb+=1, and energy per segment is normalized to the value at high tem-
they will be modified when the temperature differs from thisperature and thus this quantity approaches zero at high tem-
value. To mimic the simulation model as closely as possiblgerature. In this way we are able to return to a similar energy
in the SCF calculations we s&t=9/26 andb’/b=27/26. scale as in the MC simulations.

One may argue that in the SCF model, where the first- In Fig. 1, the normalized interaction energies per segment
order Markov approximation was used in the chain statisticsare plotted as a function of the temperatlirior the primary
a lower number of beads along the chain should be chosen Bequences used. Figure 2 shows more detail for the random
order to correctly compare to the MC simulations. Howeverand proteinlike sequences. Here we have assumed that the
as we like to perform the calculations on exactly the saménteraction parameters in the SCF model are inversely pro-
primary sequences as was done in the MC simulations, ewortional toT and thus they are purely enthalpic. The random
pecially as it comes to the proteinlike primary sequences, wand proteinlike curves are averaged over 17 different primary
have chosen to usgd= 250 in the SCF calculations also. sequences. In Fig. 2 the two curves are replotted together

B 1 . (ZyxexxT Zyyeyy)
Xxy T | T | ExvExy T 2 ,
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FIG. 2. This plot is similar to Fig. 1 but only the curves for T
random and proteinlike sequences are plotted. Individual random ) )
sequences are indicated RL andR2. Similarly, P1 andP2 de- FIG. 3. The radius of gyration versus the temperafuas found
note curves for proteinlike sequences. The cueand R (aver- in the SCF calculations also plotted in Fig. 1. The labeling of the
aged over 17 sequengeare taken from Fig. 1. curves is similar to Fig. 1. The Flory-Huggins interaction param-

eters were taken to be enthalpic quantities.

with two typical examples of particular results found for two o resonding region for a random copolymer chain, again
specified sequences. It is seen that the individual curves d%

! ) i . ~because the latter has, on average, shorter stretches of non-
viate only a little bit from the average. In all cases investi- :
o > polar chain segments.
gated the deviations from the average were significantl

; y (iii) At the end of the molten globule state there is a sud-
smaller than the difference between the random and the Pr%en jump in the interaction energy. At this temperafiigg,
teinlike sequences. Inspection of Figs. 1 and 2 shows that °

: . R . . the coil to globule transition is found. In several cases, espe-
is possible to distinguish four regions in each curve.

0 At in th I q h _cially for the regular polymers with large blocks, the transi-
(i) At low temperature, in the collapsed state, the energy i ion appears as a first-order-like transition. The transition

constant and this state may be called the ground state. W mperature increases with increasing block length. For the
increasing block sizé for the regular copolymers we notice regular block copolymers the jump appears especially large
that the ground state energy de_creases. The reason for thi 6t chains with intermediate block lengths. Below we will
that small blocks along the chain cannot avoid intedd ., mment on the cooperativity of the transition in relation to
contacts. The internal structure of the=2 globules is a  yhe assumptions made in the SCF theory. Significantly, we
layered one. The molecule core consists of alternai@iy  fihq that the proteinlike and the random copolymers have a
tice) layers filled byA and then byB units. For larger block ey, small jumpif any) at the coil to globule transition. The

Iengths the regions rich iA andB are larger than a single transition thus tends to become continuous with increasing
lattice layer and therefore the ground state energy can b‘?évels of heterogeneity along the chain.

come lower. The ground state level of a random sequence IS ;) ginally, at very high temperature the chains are swol-
S|gn|f|can_tly higher thap that for a proteinlike chain. This is o, 4nd behave as a randdor even swollencoil. In such a
because in the.protelnllke sequence there are Ionger S.tretChéﬁain the majority of the interactions are between polymer
of nonpolar units that can efficiently pack in the interior of nits and solvent molecules. This state does not depend on
the dense globule than in the random sequences. Here, Wte primary structure of the chains and, therefore, the inter-

thus notice that the coloring procedure results in chains thal tjon energy levels off to a constant value, which due to the
significantly differ from their random analogues. normalization is equal to zero.

(i) At slightly higher temperature, fluctuations in chain |, Figs. 3 and 4 we collect the corresponding radii of
conformations become possible and the compact molecul ration as a function of the temperatdreAgain the corre-
undergoes internal rearrangements. As we will see below, t onding curves plotted in Fig. 4 show that the deviations
chains remain rather compact but the interaction energy p&h 4t exist within one sequence type is small as compared to

segment increases more or less linearly with the temperatutge jeyiations in the shape and position of the curve between

T. We refer to this regime as the molten globule s{@@l.  soq,ence types. We have corrected both the SCF results and
There is not a strong dependence for the onset of the mol- the computer simulation resultsee below in Figs. 8 and) 9

ten globule domain. When more entropic restrictions %y, the radius of gyration to a system with=6 and bond

locked into the ground stai@e., for smallerL), the system ;
enters the molten globule state easier. The longer the bloclgngth equal to segment diameter. The relaﬁgp;\/)\—l [35]

. ives us that th&,'s found with the SCF method should be
length the larger the temperature range over which the mol* 9
ten globules state is found. Both the proteinlike and the ranmultiplied by \/(%5). The Ry's from the MC simulations
dom copolymers have a well-developed molten globule rehave to be divided by the average bond length: 2.7. Typically
gime. For proteinlike chains this region is wider than theone would expect the chains to have the largest size at high
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0
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0 T T T T T T
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T FIG. 5. Normalized segmental energy as a function of the tem-

peratureT for a regular block copolymek =5 as found by SCF

FIG. 4. As Fig. 3, but now only for the random and proteinlike ¢5\cylations for the one-gradient and two-gradient approaches as
sequences, both the averages and the individual sequences are frifficated.

the same computations as in Fig. 2.

h he chai I i q hthe center of the lattice always cooperate. This is not realistic
temperature, where the chains are swollen colls, and thg, ijeally, no symmetry would be enforced. Computation-
smallest size at low temperatiground statf: Inspection of ally, this is not feasible. To obtain insight in the conse-

Fig. 3 shﬁ)w; the;t, als exp(tacted, altl curv$ﬁ tend to haved tﬁuences of the implied symmetry, we have performed calcu-
same coll size for ‘arge temperature. heré IS a gradughiinng on g cylindrical system with two gradients. This

change inRg(T)dindthf] SWO"?n :egir;jes.l_F(_)tr smallj th_e system has one gradient along the axis of the cylinder and
gurves are rounded whereas for largethe limiting value is one in the radial direction. As in the one-gradient SCF theory

found almost directly after the coil to globule transition. At the chain is forced to go through a preassigned coordinate

the coil to globule transition temperature the size decrease[ﬁat we denote as the origin (0,0) at the central lattice layer
sharply with decrease in. For the regular block copolymers on the symmetry axis of the lattice. In addition, the position

the coils collapse almost immediately to a compact size._ Thi%f one of the ends of the chain is restricted to coordinates
fact can be understood as a consequence of effective stiffne S 0), wherez' >0 is a coordinate on the symmetry axis of

of a copolymer_cham: one can represent a regular ”.‘“'“P'OC e coordinate system. In this way rotational degeneracy of
copolymer chain as a rather stiff homopolymer chain with a

: . . . ; - “chain conformations is partly removed from the calculations.
large and highly anisotropic effective monomer unit equiva-

lent t fallA B block in th iainal | hai The impact of the extra degree of freedom in a two-
ent 1o one fuliA, B, block In the original copolymer chain. gradient SCF approach is illustrated in Fig. 5 for the case
This effective stiffness due to renormalization of the mono-

mer units leads to sharper coil-globule transiti@]. The L=>5. In Fig. 5 the normalized energy per segment as a func-

distinction between the around state and the molten alob Ition of the temperaturd is plotted for the two versions of
distinction between the ground state a € motten globulg, . ek theory. As anticipated, the transition is continuous in
is not clearly visible from inspection of the radius of gyra-

tion. This is in agreement with the notion of a molten globulethe two-gradient case. Note as well that the transition tem-
) . rature is not th me in h f calculations. Th
as a dense weakly ordered struct(igd]. The size at low perature is not the same in both types of calculations c

. X reason is that the extra degree of freedom allows a more
temperature decreases with decreasing block length. The re g

. Efficient lowering of the free energy of the coils. In other
son is that a structure formed by a regular block COpO.Iyme(/vords the molecules tend to be more stable at any tempera-
with large block length. tends to be a collapsed core with a

swollen corona with solvated loops. For smallno 100ps ture. This is thus also reflected in the increase of the transi-
. ps. For. . P tion temperature. The conclusion is that the coil to globule
can develop. Interestingly, fdt=25 a minimum in the ra-

) L . transition is likely to be a continuous transition for these
dius of gyration is found as a function of the temperature,[yloes of regular copolymers
This minimum is attributed to the miscibility & in B (and '
B in A) at intermediate temperatures. Due to this the length
of the loops tend to go through a minimum. For the random
and the proteinlike sequences, the radius of gyration in- We discuss the results of Monte Carlo computer simula-
creases relatively smoothly with the temperature. The variation for copolymers with different primary sequences. Be-
tion in block lengths present in both the random and thecause it is impossible to sample reasonable statistics in dense
proteinlike sequences is responsible for the more gradual irglobular state using local moves only, we have studied the
crease in the size of the molecule. transition region and performed the histogram reweighting to

The cooperativity of the coil to globule transition as seenslightly lower temperatures. In our simulation we can calcu-

in spherical lattice with one gradient is overestimated. Bedate, e.g., the energy, the gyration radius, the mean cluster
cause of the spherical symmetry, segments on either side sfze(number of monomeric units of tyg®, which belong to

B. Computer simulation results
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0 ization to high temperatures is not needed.
f r’— ﬁ The histogram reweighting results are expected to be ac-
curate only in the vicinity of the transition region, but not at
very low temperature3. The reason for the latter is that a
rare event of finding a low energy while simulating in the
4 - transition region determines the energy level of the ground
2 4[R|5 P |T 25 state. This then results in an inaccurate estimate for this limit,
because the true ground state level was probably not reached
. at all during the simulation. The molten globule regime as
found in SCF calculations is relatively more difficult to re-
/ ) trieve accurately in Monte Carlo simulation because of the

-8 -

relatively poor statistics for compact globules. Moreover, the
conformations of compact globules obtained in MC simula-
tion at low temperatures correspond to the case of the so-
Ls ' 25 ' 35 ' 45 called crumpled globule and not to the equilibrium ¢&6].
T With this in mind, we notice that the shapes of tB€T)
curves in Fig. 6 are qualitatively similar to those found in
FIG. 6. The interaction energy per monomer unit for all primary SCF calculationgFig. 1). In line with the SCF results, the
sequences is plotted versus the system temperé@il@ecomputer  block copolymers have a more cooperative coil to globule
simulation results Regular block copolymers are labeled with the transition than the random and proteinlike sequences. Also,
value forL. The proteinlikeP and randonR curves were obtained the transitions of the protein"ke sequences are more gradua|
by aVeraging the data obtained for 17 different sequences. than those Of the random ones. F|na”y' a good agreement
between the SCF and MC results is found for the order of the
the dense cojeand the fluctuations of all these quantities. transition temperature for the random and proteinlike se-
For the sake of comparison we concentrate here on the firgfuences in relation to the regular block copolymers. Interest-
two of these quantities. ingly, the difference in interaction energy per segment be-
In Fig. 6, the segmental energy is plotted as a function otween the high and low temperature limits is also not quite
the temperaturd for the regular block copolymers and the the same in both methods. Apparently, the number of con-
averaged random and averaged proteinlike sequences, Whilgcts between different type of segments in the ground state
in Fig. 7 the results of the simulations are shown for thejs not the same in both methods.
individual random and proteinlike primary sequences identi- One of the differences between both methods is the much
cal to those in Fig. 2. Completely in line with the SCF resultsshorter molten globule regime in the MC results. In the SCF
we find that the transition temperature increases with blockesults, the interaction energy was found to increase linearly
sizeL. All curves in this figure tend to go toward&N=0  with the temperature in this regime. In MC results this re-
for large temperatures. This is the natural consequence of thffime can be indicated for regular copolymers and is better
choice of the parameters: tieand B monomers have inter- visible for random and proteinlike copolymers, but it is
action potentials with the solvent that are equal in magnitudgharper and shorter than that in SCF. We cannot decide at the
but differ in sign. So unlike the SCF calculations, a normal-moment the reason for this disagreement: whether it is only
due to the relatively poor statistics of the MC method in this
0 regime, or also due to an inherent problem in the SCF cal-
: culations. Another problem, obviously, is the huge difference
in the temperature scale between both of the computational
methods. We will return to this point below.
As to the radii of gyration, the counterpart of Figs. 3 and
4 are Figs. 8 and 9, respectively. Quantitatively, the results of
both the methods are again in good agreement for both the
collapsed and coil states. With respect to the coil-globule
transition, it is of interest to point to a few pertinent features
in the MC plots which compare favorably with the SCF re-
sults. One of these is the value of the radius of gyration at the
temperature just abové,,,s. This value decreases signifi-
. T cantly with block sizelL; more generally it decreases with
2 3 4 decreasing transition temperature. This may be attributed to
the fact that for chains that have ma#yB connections

FIG. 7. This plot is similar to Fig. 6 but only curves for random &long the chainle.g., smallL), the (renormalized solvent
and proteinlike sequences are plotted. Individual random sequencéilality just above the transition is still rather poor. It takes a
are indicated byR1 andR2. Similarly, P1 andP2 denote curves Significant temperature increase before the good solvent re-
for two particular proteinlike sequences. The curiFeandR (aver-  gime is reached. Clearly, these aspects are present in both
aged of 17 sequenceare taken from Fig. 6. computational methods. Not surprisingly the size of the glob-

E(T)-E(=)]
N

-4
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12 sequence as plotted in Figs. 7 and 9 proves that both the
/ simulations and the SCF calculations are sensitive in a com-
R I parable way to the primary sequence. This shows that both

the computation tools are consistent and have a predictive
power.

There is a seeming disagreement between the present
computer simulation results and those published in Refs.
5 pl|7 25 [5,7]. In these papers, the transition for random copolymers
is less abrupt than that for proteinlike chains. This is opposite
to the trend we find here. The reason for such a seeming
disagreement is the shorter chain length used in the present
work (N=250 instead oN=512 in Refs[5,7]). There are
two physical factors that influence the sharpness of the tran-
sition: the average block length and its dispersion. An in-
crease in the average block length leads to a more coopera-
T tive and, therefore, sharper transition. A larger dispersion of

the block length gives a smoother transition. The average

FIG. 8. The radius of gyration versus the temperafuas found ~ block length and the dispersion of the block length increase
in the MC simulations are also plotted in Fig. 6. The labeling of thewith chain length for both types of sequences. Apparently,
curves is similar to Fig. 6. for random copolymers dil=512 monomeric units it is the

first factor that plays a dominant role, while for the shorter
ules is only a weak function of the primary sequence. As &hain of N=250 monomeric units the second factor domi-
consequence the jump in radius of gyration decreases withates. On the other hand, as it was shown in &3] the
block sizeL. Again, in line with the findings of the SCF correlations in the primary sequences of proteinkk@ co-
calculations, the presence of lomgloops, possible in the polymers obey the so-called Levy-flight statistics. This
primary sequence with high, results in a slightly higheR, ~ means that very long blocks can occur in the primary se-
of the ground state. quence if the total length of the chain allows this to happen.

The proteinlike and random sequences show also in théuch long blocks will increase the sharpness of the transi-
Ry(T) plot a less steep increase at the transition temperatur8on. This can be realized only for rather long chaiins., for
This is completely in line with the decreased cooperativity ofN=512 chain in Refs[5,7]) while such long blocks prob-
the transition as found from the interaction energy curvegbly never occur foN=250 chain.
discussed above. Upon close inspection however, the slope It is of interest to investigate the transition temperature as
in the transition region for the proteinlike copolymer is ap-a function of the block lengths as found in both methods. We
proximately half of that for the random sequence. This is inhave determined the transition temperature as the tempera-
agreement with SCF calculations, although the SCF result#ire where the heat capacity
show this trend to be more pronounced. Again this may be 5 5
attributed to the differences in the temperature scale as we C _(E9—(E)
will show below. The deviation within a type of primary v kg T2

_

4_J—4J:

0 T T I T T

(21)

12 has its maximum. From the curves in Fig. 1 transition tem-
- peratures can be found by taking the maximum derivative of
the curves. In Fig. 10 these quantities are collected. In this
graph we included block lengths up ko=125 in the SCF
calculations. For the SCF computations a sigmoidal shape is
found in a linear-log plot. Although much less clear, this
shape of the curve is consistent with the MC data. At sinall
value the transition temperature is relatively independent of
L. For intermediatd. value we find that the transition tem-
perature scales logarithmically with This regime is lost for
very highL where there are just two blocks in the molecule.
In Fig. 10 the transition temperatures of the random and
proteinlike sequences are also included. The random se-
quences show a transition temperature that is equivalent to
theL =4 regular chains as found by means of MC simulation
and to slightly higher value of =6 in the SCF approach.
We note that the number average block size of random se-
FIG. 9. As in Fig. 8, but now only for the random and protein- quences is just 2. Apparently, the transition temperature is
like sequences, both the average and the individual sequences dietermined by the longer block lengths. A similar phenom-
from the same computations as in Fig. 7. enon is observed for the proteinlike sequences. Again, the
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40 solvent conditions, and relatively small in bad solvent con-
ditions. The bond length variations are a seat of entropy not

SF X .
4 Trans present in the SCF model. To correct for this, we should
MC -30 write the FH parameter as a free energy parameter.
Tirans (i) The third problem is due to the difference in size

between a polymer segment and a solvent molecule. One
L 20 may argue that in the above translation between the energy
parameters as used in MC to the FH parameters this was
accounted for. However, there remains the problem that there
10 must be some entropy associated to the difference in size
between these units. Again, this problem can in the first ap-
proximation be lifted by suggesting that the FH parameters

0 : : 0 are free energy parameters.
1 10 100 Especially the latter two problems seriously frustrate our
L attempts to compare both methods quantitatively as to the
FIG. 10. The transition temperatuf.. as a function of the temperature where the transitions take place. In an attempt to

length of the blocks. as found in MC simulationpen square, left dO this more quantitatively one has to estimate how the three
ordinaté and in SCF calculation@pen circles, right ordinateln ~ FH interaction parameters are to be split up into enthalpic
the SCF results the temperature is defined by taking the Floryand entropic parts. Both problems under consideration are
Huggins interaction parameters to be enthalpic quantities. The trarf?0t likely to affect theAB interaction parameter. This one
sition temperature for the random sequences and the proteinlikéan be considered enthalpic as it is. The other two, however,
sequences as found with the respective methods are indicated by thaust be corrected by a AS contribution. One should real-
filled triangles. ize, however, that point§i) and (iii) are related: when the
solvent molecules are of the same size as the polymer units,

transition temperature is much higher than could be expectel§ Would be hard to come up with a method that allows the
from the number average block length: the number averag@onds to fluctuate without introducing serious packlng prob-
length is around 3.7 whereas the transition temperature o¢eMs. In a densely packed phase with polymer ufiite
curs around thé.=7 (MC result$ or L=12 (SCF results reference there are just six bond directioffall of length 2.
position for regular chains. Alternatively in the dilute case there are 108 bonds and
Quantitative agreement for the temperature scales canngtérefore the correction should be of the order of
be seen because there remain significant differences betwegr"(108/6). With this correction we can compute the FH
the two computation techniques. Ideally, we would have darameters as a function of the temperature:
temperature in both the models that can be directly com-

pared. However, there are a few intricacies that can be traced Xns=13MT, (229
back to fundamental differences between the two methods. _ _

(i) In the MC simulations the through-bond contacts are Xas=~26/T=In(108/8), (22b)
irrelevant for the statistical weight of a given conformation. Yss=39T—In(108/6. (220

For this reason these bonds are not counted. In the SCF

model as specified above, the energetic contacts are countg@cause of the intrinsic differences we have to accept some
in the system as if the segments are detached from eacfisparity in temperature scales in between both methods. We
other. The average surrounding of each segment is countefpect that a better comparison of the temperature scale can

as if the bonds were not there. Of course this is not correche obtained by using E¢22) to calculate the interaction
but it simplifies the calculations. Typically this error is con- parameters.

sidered to be a minor point in SCF models and therefore this
approximation is usually accepted. In principle, one can rig- V. OUTLOOK
orously correct for this in a mean-field model. Alternatively,
one can effectively deal with it by renormalizing the coordi- From the above it is clear that the two computational tech-
nation number used in the calculations. Equivalent to this, ihiques give qualitatively similar results for the coil to glob-
can be dealt with by redefining the FH parameters that are inle transition of AB copolymers. Both techniques have
the system afT=1. Recall that the number of possible strong points, but also have their weaknesses. Although in
segment-segment contacts in the simulations is 26, and atinciple the MC technique is more exact, in practice com-
most two of these are through-bond contacts. For this reasgoutational restrictions often impede the theoretical advan-
we did not incorporate a correction and accept a smaltage. This is particularly evident when information is needed
change in the temperature scale. for compact globules. The SCF method is computationally
(i) The second problem originates from the fact that invery inexpensive but has the intrinsic problem that it is im-
the bond-fluctuation model it is possible that the bond lengttpossible to investigate individual conformations. Clearly the
varies, whereas in the SCF model this is fixed. As in themethods complement each other. This means that one can
bond-fluctuation model there is no energy penalty for theuse SCF calculations to investigate the sequence and param-
variation in bond length, it will tend to be large in good eter space efficiently and save computer time such that MC
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simulations can be performed on more interesting systemstype and number of segment-segment contacts in the ground
As there is qualitative agreement on the behavior of thestate were recovered in SCF method showing that this quan-
coil to globule transition in the bulk, it will be of significant tity is well defined for a particular copolymer primary se-
interest to apply both methods to the more challenging probguence. It was not possible to sample the ground state in MC
lem of AB copolymers at interfaces. This problem has sev-simulation using only local moves. The cooperativity of the
eral aspects. First the adsorption of the chains from the bulkansition has been shown to be high for regular block co-
onto the surface needs to be investigated. For this it will bgoolymer molecules. This is explained by renormalization of
important to measure the free energy as a function of theffective monomer unif3] in the case of monodisperse
distance from an adsorbing interface. Second, an interfadelocks. The cooperativity is lower for the random and pro-
often induces structural changes or unfolding transitionsteinlike sequences because of the polydispersity of the block
These and other aspects are now subject of investigation. length. Further, it was shown, in agreement with previous
results[5,7], that the globular state for proteinlike sequences
V. CONCLUSIONS is more stable than that for statistical random copolymers.
] - Beside a ground state and an unfolded coil state we have
We have analyzed the CO|I.-gIobuIe transition of COpOW'recognized a molten globule state that appears most pro-
mer systems by two computationally very different methodsnounced for the proteinlike sequences. Since proteinlike se-
namely, SCF calculations and MC simulations. The twoguences behave randomly, the calculations thus confirm the
methods complement each other. The SCF technique is cofrevious findingg5,7] that the proteinlike molecule can in-

putationally fast and captures the qualitative features ratheferit some information from the parent conformation used to
well, as proven by the more exact MC results. Due to thejefine its sequence.

differences in the methods there exists a fundamental prob-
lem with comparison of the temperature scales in both meth-
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